Role and prevalence of antibiosis and the related resistance genes in the environment
نویسندگان
چکیده
It becomes increasingly clear that the basis of antibiotic resistance problem among bacterial pathogens is not confined to the borders of clinical microbiology but has broader ecological and evolutionary associations. This Research Topic “Role and prevalence of antibiosis and the related resistance genes in the environment” in Frontiers in Microbiology: Antimicrobials, Resistance, and Chemotherapy presents the examples of occurrence and diversity of antibiotic resistance genes (ARGs) in the wide range of environments, from the grasslands of the Colombian Andes, to the dairy farms and small animal veterinary hospitals in the United Stated, and to the various environments of Continental Europe and Indochina. Besides, various genetic mechanisms and selection/co-selection factors contributing to the dissemination and maintenance of ARGs are presented. The topic is finalized by the mathematical modeling approach to access the probability of rare horizontal gene transfer (HGT) events in bacterial populations. The opinion article by Martínez (2012) summarizes our present understanding of the cycle of ARGs acquisition by bacterial pathogens. The environmental microbiota harbors a vast diversity of genes, which we usually classify as conferring resistance to antibiotics. In natural ecosystems, however, their role may be different and not necessarily associated with this function. Yet, if the certain metabolic genes are acquired by commensal/pathogenic microbiota and appeared to be conferring selective advantage under the pressure of antibiotics, their primary function under these new ecological circumstances becomes resistance to antibiotics. Moreover, upon the amplification under the antibiotic selective pressure, these ARGs are released into the environment thus contributing to the rise of antibiotic resistance in other ecological compartments. Evidence for the environmental contamination by ARGs can be seen in several articles of this Research Topic. For example, despite the low antibiotic usage in the grassland farms located in the Colombian Andes, there is a significant diversity of tetracycline resistance genes in the microbiota of the animal gut and the environment (Santamaría et al., 2011). But the diversity of the tet genes in the former ecosystem is higher thus suggesting the gene flow from the animals into the environment. Another study involved the isolation and characterization of the CTX-M [a major type of extended-spectrum beta-lactamase (ESBL)] producing Escherichia coli strains from soils, cattle, and the farm environment in the Burgundy region of France (Hartmann et al., 2012). Environmental and animal strains appeared to be clonally related. The study also suggests a longterm survival of the CTX-M-producing E. coli strains in soil since the last manure application has been done 1 year before the actual sampling. Czekalski et al. (2012) demonstrated the increased levels of multidrug-resistant bacteria and ARGs in Lake Geneva, Switzerland due to the discharge from the local wastewater treatment plant. Counterintuitively, wastewater treatment resulted in selection of extremely multidrug-resistant bacteria and accumulation of ARGs although the total bacterial load was substantially decreased. A less favorable situation with the treatment of wastewater is in Indochina, which includes Vietnam, Thailand, Cambodia, Lao PDR, and Myanmar. Suzuki and Hoa (2012) summarized the current knowledge regarding the presence of quinolones, sulfonamides, and tetracyclines as well as the corresponding ARGs in this region. They concluded that: (1) no correlation exists between the quinolone contamination and quinolone resistance; (2) occurrence of the sul sulfonamide resistance gene varies geographically; and (3) microbial diversity relates to the oxytetracycline resistance level. Thames et al. (2012) used qPCR to investigate the effect of feeding milk replacers with various antibiotic doses on the excretion of ARGs by dairy calves. Interestingly, no significant differences have been found in the absolute numbers of ARGs excreted. After the normalization to the 16S rRNA genes the relative tet(O) concentration appeared to be higher in animals fed the highest therapeutic doses of antibiotic. Besides, antibiotic feeding provided no obvious health benefits. The authors concluded that the greater than conventional nutritional intake in the study outweighs the previously reported health benefits of antibiotics. Ghosh et al. (2012) reported an interesting observation regarding the carriage of multi-drug resistant enterococci by resident cats in small animal veterinary hospitals. Genotypically identical strains were isolated from cats and surfaces of cage door, thermometer, and stethoscope suggesting that the animals may be involved in cross-contamination of the hospital environment.
منابع مشابه
Prevalence of antibiotic resistant genes in selected activated sludge processes in Isfahan Province, Iran
Wastewater treatment plants are one of the main sources of dissemination of antibiotic resistance genes (ARGs) into the environment. The present study was conducted to determine the prevalence and removal of ARGs in different wastewater treatment processes. A total of 36 samples from raw and final effluent of different activated sludge processes were collected and analyzed. Molecular analysis w...
متن کاملEmergence and Dispersion of Resistance Genes by the Aquatic Environment: a review
The association of the emergence of bacterial resistance to clinical environments is common; however, aquatic environments, especially the polluted ones, also play a key role in this regard. Aquatic environments can act as facilitator for the exchange of mobile elements, responsible for resisting antibiotics. They even may stimulate the emergence and selection of these elements through contamin...
متن کاملAcquired Antimicrobial Resistance Genes of Escherichia coli Obtained from Nigeria: In silico Genome Analysis
Background: Antimicrobial resistance is a global problem with enormous public health and economic impact. This study was carried out to get an overview of acquired antimicrobial resistance gene sequences in the genomes of Escherichia coli isolated from different food sources and the environment in Nigeria. Methods: To determine the acquired antimicrobial-resistant genes prevalence, genome asse...
متن کاملEmergence and Dispersion of Resistance Genes by the Aquatic Environment: a review
The association of the emergence of bacterial resistance to clinical environments is common; however, aquatic environments, especially the polluted ones, also play a key role in this regard. Aquatic environments can act as facilitator for the exchange of mobile elements, responsible for resisting antibiotics. They even may stimulate the emergence and selection of these elements through contamin...
متن کاملFrequency of bap and cpaA virulence genes in drug resistant clinical isolates of Acinetobacter baumannii and their role in biofilm formation
Objective(s): Acinetobacter baumannii has a high propensity to form biofilm and frequently causes medical device-related infections with multiple-drug-resistance in hospitals. The aim of this work is to study antimicrobial resistance and the role of bap and cpaA genes in biofilm formation by A. baumannii to understand how this pathogen persists in the hospital environment. Materials and Methods...
متن کاملPrevalence of qnr and aac(6’)-Ib-cr Genes in Clinical Isolates of Klebsiella Pneumoniae from Imam Hussein Hospital in Tehran
Background: Plasmid mediated quinolone resistance (PMQR) has been shown to play an important role in resistance not only to quinolones, but also β-lactams and aminoglycosides. In fact, qnr genes are frequently carried along with β-lactamase determinants on the same plasmids. We studied the prevalence of qnrA, qnrB, qnrS and aac(6’)-Ib-cr genes among quinolone and cephalosporin resistant clinica...
متن کامل